Programa

Descripción general

Partiendo desde la concepción de Ciencia Abierta (Open Science) y de investigación reproducible, este curso presenta formas alternativas a la manera tradicional de concebir la generación de conocimiento de manera cerrada y competitiva, y desde ahí se proponen y ejercitan una serie de herramientas técnicas en el análisis de datos que facilitan la reproducibilidad, colaboración y comunicación de procesos de investigación.

El curso permitirá a los participantes lograr un producto de investigación (artículo, documento de trabajo) con foco en el análisis de datos realizado de manera abierta y reproducible.

Propósito general

El quehacer académico muchas veces es criticado por su falta de aporte, transparencia y relevancia para la sociedad, crítica que se acentúa en las ciencias sociales. Desde la academia misma han surgido cuestionamientos sobre la capacidad de un trabajo que sea más abierto y auditable, que favorezca la colaboración entre académic_s y no académic_s, y que se comunique de manera eficiente dentro de la academia y fuera de ella.

Partiendo desde la concepción de Ciencia Abierta (Open Science) y de investigación reproducible, este curso presenta formas alternativas a la manera tradicional de concebir la generación de conocimiento de manera cerrada y competitiva, y desde ahí se proponen y ejercitan una serie de herramientas técnicas que facilitan la reproducibilidad, colaboración y comunicación de procesos de investigación.

El curso se dirige no solamente a aquellos estudiantes con interés principal en la investigación académica, sino también a quienes se quieran dedicar profesionalmente al análisis y reporte de información y datos sociales, trabajo en equipo multidisciplinario, y al vínculo entre academia y políticas públicas.

Resultados de aprendizaje

Al finalizar el curso, ud. será capaz de:

  • Comprender las limitaciones y problemas de la manera tradicional de realizar investigación social.

  • Conocer las herramientas que permiten y promueven una apertura de los procesos de investigación social

  • Conocer los flujos de trabajo reproducibles y transparentes

  • Desarrollar un proceso de investigación abierto basado en los propios intereses de investigación, orientados hacia la publicación de un producto académico (artículo, documento de trabajo).

Contenidos

Unidad I: Introducción a la ciencia abierta

  • Cierre y crisis de la ciencia
  • Marquetización de la academia y consecuencias para su quehacer
  • Propuestas de políticas de apertura científica a nivel internacional

Unidad II: Reproducibilidad y transparencia

2.1 Programación literaria

  • Trabajando en texto plano: Introducción a Rmarkdown y Latex
  • Generación de reportes dinámicos vía Knitr.
  • Gestión de fuentes bibliográficas: Zotero, BibTex y BetterBibTex

2.2 Flujos, control y documentación

  • Flujos reproducibles (protocolo IPO)
  • Control de versiones con Git
  • Trabajo colaborativo y versionado con Github

Unidad III: Accesibilidad y pubilcación

  • Pre-registros y planes de pre-analisis
  • Publicación abierta vía pre-prints (SoxArxiv) y página web (Github pages)
  • Generación de presentaciones dinámicas (Xaringan)
  • Visualización de datos, Shiny apps, reportes interactivos
  • Proyectos de investigación en OSF (Open Science Framework)
  • Visualización de datos

Metodología

El curso se organiza en sesiones semanales, con una parte lectiva seguida de una práctica. En la parte lectiva se transmiten y discuten los conceptos centrales de la ciencia abierta. En la parte práctica se aplicarán los conceptos transmitidos en la parte lectiva, además de resolver dudas en el avance de los trabajos de investigación.

El curso estará orientado a que l_s participantes puedan al final generar un producto de investigación con características de apertura científica. Para ello, pueden profundizar en algún trabajo previo que les permita avanzar hacia una publicación académica en un proceso de investigación supervisado y reproducible.

Evaluación

La evaluación consistirá en la elaboración de un reporte en el formato de artículo de investigación, elaborado en tres entregas parciales en las que se avanza secuencialmente en los contenidos del curso. Estas entregas son grupales, máximo 5 integrantes.

Entrega 1 (20%): Reporte en texto plano

Consiste en la entrega de un trabajo escrito en formato plano, se sugiere algún trabajo de curso previo que contemple análisis de datos y en el que se quiera avanzar en su publicación.

Esta entrega abarca hasta el punto 2.1 del programa (programación literaria), se espera un documento en lenguaje RMarkdown y su correspondiente conversión a html, incluyendo análisis de datos y presentación de resultados que demuestren manejo de las opciones de RMarkdown. Además, se deben incluir referencias bibliográficas.

El foco del trabajo está en la presentación de resultados de análisis, donde se debe incluir al menos una tabla y un gráfico generados por el código que se encuentra en el mismo documento, y que se presenten adecuadamente en la conversión a html.

La estructura del trabajo es secundaria, pero se recomienda seguir las secciones habituales (Resumen, Introducción, Antecedentes conceptuales/empíricos, Metodología, Análisis, Conclusiones). No se espera que realicen un trabajo nuevo, sino que algún trabajo previo puedan pasarlo a este formato. No se realizará corrección de contenidos, sino solamente se evaluará el aprendizaje de herramientas de escritura reproducible en texto plano con RMarkdown.

La fecha de entrega actualizada aparece en la planificación de actividades

Entrega 2 (30%): Reproducibilidad.

Documentación de la investigación en un protocolo reproducible (Protocolo IPO).

Entrega 3: (50%): Control de versiones y publicación.

Desarrollo de repositorio abierto y publicación en formato web y/o pre-print.

Requisitos de aprobación

Nota mínima de aprobación: 4,0 (en escala de 1 a 7).

Palabras clave

Ciencia abierta, reproducibilidad, acceso abierto, transparencia, pre-prints, repositorios, control de versiones, markdown.

Bibliografía Obligatoria (… o central)

Hay cuatro libros que me parecen centrales para este curso, pero tres de ellos están en inglés y no se consideran obligatorios sino más bien de consulta (o cabecera).

  • El libro base del curso es “Transparent and Reproducible Social Science Research”, de Christensen, G. S., Freese, J., & Miguel, E. (2019). Es lo más cercano a los temas del curso, y como ven muy reciente, del tema no había bibliografía así de especializada hasta el año pasado. Lamentablemente, y también paradojicamente, es un libro no disponible de manera gratuita. Muy recomendable. Comentaremos algunos de sus contenidos en las primeras sesiones introductorias.

  • Un segundo texto no tiene relación directa con apertura, pero sí muchos elementos que ayudan para llevar a cabo análisis reproducibles en R: R for Data Science (conocido como RDS) de Garrett Grolemund y Hadley Wickham (2017). Afortunadamente tenemos una versión traducida al español y disponible de manera abierta online: “R para Ciencia de Datos”

  • El tercero es más específico para la Unidad 2 sobre escritura en texto plano: “The Plain Person’s Guide to Plain Text Social Science”, de Kieran Healy en su última version 2019. Para mi gusto uno de los libros inspiradores sobre las implicancias para la escritura del trabajo académico abierto, y escrito por un gran sociólogo.

  • Y el cuarto es R Markdown: The definitive guide, de Yihui Xie, J. J. Allaire & Garrett Grolemund (2019). Abarca los detalles del proceso de investigación reproducible vinculando escritura y análisis, pero con mucho énfasis en publicación y presentación de resultados.

El detalle de otras lecturas sugeridas para cada clase aparece en la página de Planificación) de las sesiones.

Software

Como software de escritorio vamos a utilizar R/Rstudio y Git/Github. Rstudio avanza cada vez más hacia un editor generalizado de texto, con funciones que van mucho más allá del análisis de datos. Si bien me parece apropiado para el curso, corresponde decir que la opción por editores también es algo abierto, sobre todo en un curso que tiene que ver con apertura. Otros editores muy usados son [Emacs]https://www.gnu.org/software/emacs/, Sublime y Atom. Si a alguien le interesa podemos hacer alguna sesión adicional sobre Atom, que es el editor que yo uso.

Planificación de las sesiones y materiales respectivos

Consultar la página Planificación.